Barbara Owens: This is an interview with Judith Gal-Ezer of the Open University of Israel on the 9th of March, [2007] at Covington, Kentucky. It is part of the Computing Educators Oral History Project. It’s being conducted Barbara Boucher Owens.

Did I say your name right, Judith? Would you say it for us so it gets in here correctly, both in English and Hebrew if you like?

Judith Gal-Ezer: All right. In Hebrew it is [says name in Hebrew]. And in English it is Judith Gal-Ezer.

B: Thank you very much. And it’s a pleasure to have you with us this afternoon and to talk to us a little bit about — thinking way, way, way back — let’s talk about your parents’ education. Did your parents have college degrees?

J: No, unfortunately my parents did not have any college degrees. They were born, both of them, in Berlin and they had to flee from Germany in 1939. Actually, my father left in 1938 and my mother a year later. They weren’t my parents, then, of course. They were teenagers. And they came to Israel. Their parents and siblings and other members of the family were
taken to the concentration camps and they never came back.

And they had to struggle to lead a decent life in Israel. My father was a carpenter and right from the beginning he had to work for his living. My mother was younger — my father was about 19 years old and my mother was about 14 years old. And she went to a secretaries’ school and meant to become a secretary. But then, after years, when they dated first and then got married, my father thought, “It’s good for a woman to be at home and not to work at all.” So she became a housewife. And he went on with his carpenter work. And so they didn’t have any college, any formal education.

B: So neither of your parents were in computers or science or anything like that?

J: No. No. Not at all.

B: Were you a good student when you were in school?

J: A very, very good student, I must say!

B: You should see her eyes light up!

J: Yes. I loved to learn, just from the beginning. I really loved it. I loved doing my homework. Unbelievable, I mean, my children can’t believe it, but I really loved it. And I was a very good student.

I met my elementary school teacher, my seventh and eighth elementary grades, a few weeks ago, by accident, and she even told me — I don’t think I ever knew it — that I was the first in Israel in the exam that we had to take when graduating elementary school. I don’t think I ever knew that; I don’t think she ever told us.

B: You were a good student! Did you take courses in mathematics and science that prepared you for college studies? I think you told us that.

J: Yes, in high school, I elected the class that put emphasis on mathematics and physics and chemistry, but more physics than chemistry. We had five classes: two humanities, one was biology, one was more social studies oriented, and one was the math and physics class. We were twenty boys and four girls there. This was my choice. I loved mathematics from the beginning. I think I was pretty good in mathematics, and physics too, but more mathematics than physics.

B: Could you explain just a little bit about the high school curriculum. You didn’t take any humanities? You chose to only take math and physics. Is that how it worked?

J: No, we had humanities and some social sciences as well. And the Bible and Hebrew studies and English studies, of course. But the emphasis was on mathematics and physics.

B: OK, I understand. Did you have any brothers or sisters who went on to college or
professions?

J: Yes, I have one brother who is an engineer, aeronautics engineer (I forgot the word).

B: And that’s it, just one brother?

J: Just one brother.

B: Were you given the same educational opportunities that your brother had?

J: Maybe, the same opportunities — no, not even the same opportunities. There was not the same support. When I graduated elementary school my father thought that I should go working, go learn something like being a secretary or whatever. Why should I go to high school, I’m going to be a housewife anyway? So this was his attitude. He never believed it. I told him after years that this is what he said, but he never believed that he said it. [both laugh] I have to confess, that one reason, I must say, was also that we weren’t very well — my parents didn’t have the money to send me to high school — it was pretty expensive. So this is one of the reasons, I must say. But there was also this philosophy that I’m a girl and I should stay at home. So I asked one of my elementary school teachers, my music teacher, to come home and convince my father that I should go to high school, because I was a very good student. So I finally joined high school.

For my brother it was obvious that he would go to high school and that he would go to the Technion, the Technical Institution of Israel. And it wasn’t at all obvious that I would go on and continue at the university.

B: Were there teachers that, particularly in your early life, inspired you to pursue this mathematics, physics career path?

J: Yes, I believe there were especially two teachers. One was the teacher of my seventh and eighth grade in elementary school. She was a wonderful teacher. And she taught us mathematics, literature, and physics (all the physics we studied then). I loved the way she taught us mathematics. We were two groups in mathematics. There was the intensive group, so to speak, and I participated in the intensive group and she was really very good. I knew that this is what I want to do, this is what I’m going to do, to do mathematics.

And then there was the teacher in high school, in the 10th, 11th, and 12th grades of high school. He was also very, very good. He taught us much more than he had to teach, to learn, for the end exams [the matriculation exams]. I was sure that I am going to pursue math studies at the university.

B: How did you choose? When you decided you were going to university, you were supposed to go to secretarial school. How did it happen that you went to college and how did you choose the undergraduate institution that you went to?

J: I was very determined to pursue higher education, so I made it. Actually, I wanted to join the
Weizmann Institute — I can’t say I’m sorry, but this was my dream. I read — now, I remember, while in high school, being a teenager — I read the book of Madame Curie. This inspired me a lot. (Oh, I should have mentioned that yesterday [during my keynote talk]!) I dreamt of being Madame Curie. So I thought I would join Weizmann Institute, but then they didn’t have undergraduate studies, they had only graduate studies. So I chose the Tel Aviv University. I lived in Tel Aviv, and this was the most convenient. They had applied mathematics there, so I chose applied mathematics.

B: Was the university education free in Israel?

J: No, not at all. We had to pay. I also learned the accordion. Do you know what the accordion? I was pretty good in this, too. I loved this, too. But I had to choose. I mean, when I got 18, I had to choose: Am I going to become a musician or a mathematician? So I chose mathematics. But, I taught accordion, and so I earned the money I paid for my studies in university.

B: How interesting, how interesting. Well, you’ve said that you came to school knowing what you wanted to major in. Then why did you or how did you decide to go on? Did you do that right away? Or after you … well, you might tell me a little but about your undergraduate experience before you tell me more.

J: Well it was very difficult. It was very difficult. It was very different from high school. Despite the fact I was a very good student in high school, I found it very difficult in university. I can’t say that I was the best in university, not at all. The first year was difficult. Calculus — no, calculus was OK — but the linear algebra course I remember to be most difficult. The logic course was quite difficult. But then this was the first year. The second and third were much better. We in Israel have to join the army. Well, I went on the academic reserve, so that I could study first the undergraduate program and join the army later. And I joined the army right after graduating and I went to a computer unit. There started my love for computers.

When I graduated, the same time — oh, let me turn to some personal details. I knew my husband ever since elementary school. We were not in the same class, but we were in parallel classes, but there was no connection between us. But we were in the same class in high school. And then he also went to the academic reserve and he chose to study physics at Tel Aviv University as well. And so in applied mathematics we had many physics courses as well, so we had many courses together. And then our friendship started.

And when we graduated and — as I said, he was also in the academic reserve, he also joined the army — no, actually he took the Master’s program and he joined the army one year later. But then we already decided to get married. And so I again had to earn some money for our living, because he was still a student of the Master’s program and I was in the army. And we cannot work, we don’t have any salary while we are in the army. So I asked — I mentioned my colleague, Gideon Zwas, who was also my teacher and a very good friend. And I asked him if I could be a TA or something while I am in the army so that I can earn some money. And he said, “You can do that and I can see to it, but you have to enroll to a Master’s
program.” So I enrolled in a mathematics program while being in the army. I don’t know if it’s allowed! But anyway, I’ve done it. [laughter]

B: You don’t think anybody listening to this will come after you, do you?

J: That was years ago! So I actually continued with my Master’s program and then my instructor of the Master’s thesis told me, “I understand that you’re going on to the doctorate.” And so I said, “Yes of course!” And this is how I went on to the doctorate program in seismology. And it was still not anything to do with computers. I worked in programming in the army. COBOL. Yes. And while doing the doctorate — it was in seismology — and I wrote these huge programs in FORTRAN on these … (how were they called? [makes a rectangle with her hands])

B: Punch cards?

J: Punch cards, yes! And I think for most of the time of my doctorate I went down to the computer laboratory and put these punch cards on the machine and waited the night to get the output and so on. But this was kind of a beginning and I …

B: Let’s go back and reflect a little bit on this. When you were in high school it was your story you tell about there being twenty boys and four girls. You haven’t said anything about the ratio in your classes when you were studying applied mathematics at Tel Aviv. Do you remember?

J: Yeah, it wasn’t so … the ratio wasn’t so bad, but the girls were a minority, I would say. It’s hard to remember now.

B: So it wasn’t important, you mean.

J: Maybe something 30% of … something like 30%. Sometimes we were mixed classes with those who study statistics. The girls were more than in physics and math, of course.

B: So you went on to the doctorate. You were out of the army?

J: I was out of the army. By then I had two girls already.

B: Oh!

J: [laughs]

B: Working on a Master’s, in the army, and having two babies!

J: Yes, that’s true. Yep!

B: Busy lady.
J: I always was, yeah! And then when I finished my doctorate, I gave birth to my son.

B: And so you're saying that on your doctorate you studied something … that seismology wasn't what you did on your Master’s

J: It was close; it was nearby. It was wave propagation in my Master’s program.

B: Did you enjoy the research that you did for your doctorate?

J: I enjoyed the research. My instructor was a very tough and very tense man. And it was not so easy to work with him. I learned from him a lot, but my days were pretty tough and not always very pleasant. This is the truth. So I don't see this period as very enjoyable.

B: Something you had to do?

J: I wanted to do it. I wanted to make the progress; I wanted to get the Ph.D. But it was less enjoyable than the year before and the year later. The years have gone, though.

B: How many years was it that you felt like you were working on this dissertation?

J: It was all in all about five years that I began and until I got the Ph.D.

B: And then how did your life go after you got your Ph.D.?

J: Well, it was something like the third or fourth year of the Ph.D. — Professor Bruckheimer, who was one of the founders of the Open University in Great Britain, gave a colloquium lecture at the Tel Aviv University. And then I came home and I told my husband that if there would be such an institution in Israel, there is where I want to be. And something like one or two years later, the Open University [in Israel] was established. And some of my colleagues from Tel Aviv University, two physicists, and one colleague, who studied mathematics with me, joined the Open University as TAs, they were not faculty yet, and they told me to come and join them. And I said, “Well, I can’t do everything. I have to finish my doctorate first.” And then I join the Open University. And this is how it was. I graduated my doctorate program and then joined the Open University and there I am ever since. And I really love this place.

B: She is smiling very broadly. She loves this place. And what about the idea of the Open University appealed to you so that you came home after that talk and said, “That’s what I want to do!”?

J: While being at Tel Aviv University I was also teaching. I taught various classes, but I very much liked the engineering classes. I taught math, numerical analysis and differential equations, and complex function and — that’s it, I think. I loved it; I really loved it. I felt that I really taught mathematics to the engineers, who weren’t interested at all. I mean, they wanted the questions, the solutions, which should be a number, and that’s it. Or a recipe or something like this. And I didn’t like it. I didn’t want it to be this way. So I tried to do my
best to teach them the beauty of mathematics. Besides, it was applied mathematics, it’s not pure mathematics. But still I thought there is a beauty and to really made them love it. And I think I succeeded. And so I thought teaching … I went back actually to what I wanted to do when I was in high school or elementary school, to be a teacher. And I felt that this is what I should do. And the Open University puts emphasis on teaching, great emphasis on teaching. It is a distance education institution. And the faculty at the Open University — well, it’s not face-to-face teaching, but we have to prepare the material, the textbooks. And I felt that I could do something to contribute and this is what I want to do. Shall I go on?

B: If you want to. But was there somebody who was a mentor who supported this move into education?

J: There was my teacher and then colleague, Gideon Zwas, who was a great teacher.

B: Can you spell that name again?

J: Gideon Zwas. It’s Zed-w-a-s.

B: Thank you.

J: He was a great teacher. And we were also friends. And we … after years we make research together. And he really inspired me. He taught me how to prepare a lesson. How to motivate the students. How to devote — actually, he devoted his life to teaching and to his students and how important it is. So he supported my desire to become a teacher.

B: Your career has moved from — certainly, no seismology anymore.

J: No, no.

B: And the mathematics has been paired with computer science.

J: Yeah. Well …

B: Can you talk about how that path developed?

J: Yes. I can. When I started work at the Open University — and what I really was doing then was preparing textbooks — I felt that I needed something more, some additional thing to do or to research. So what I felt I wanted to do was to take advantage of the computer’s potential and to integrate it into the teaching of mathematics and to see how mathematics can be taught better, with more insight, with the help of the computer. So I joined Gideon Zwas who was doing similar work in the past. There was another colleague, Shlomo Breuer, they wrote a book, *The Mathematical Laboratory* (full title: *Numerical Mathematics: A Laboratory Approach*, by Shlomo Breuer & Gideon Zwas, Cambridge University Press, 1993. ISBN 0-521-44040-8). And so I asked him if he was
willing to work with me on such issues and he agreed. So we worked from … I think it was in 1987 to 2000, thirteen years together or so. We met once a week — I was very busy at the Open University; he was very busy at the university, at Tel Aviv University — so we met once a week and we made this research on integrating the computer into mathematics teaching. We provided ways to teach mathematics without the prerequisites usually needed. Yep.

And then I felt that I … something was missing with my computer education, computer science education. That I know how to use a computer, but I don’t know this science is really … what are the foundations of the science. So I decided to take courses in computer science. And I took about ten courses, which are the core of computer science. And at the same time, at the Open University, the president of the Open University decided to develop the computer science undergraduate program. And so I went into it. Well, then I started to develop computer science courses — not by myself, there were my colleagues, but we were the ones who founded computer science department at the Open University.

[25:14]

B: If you have a teaching philosophy … you said you want to convey this love of learning mathematics, or I assume now computer science, to your students. But what drives you? What’s your overall philosophy about doing this? Do you have one?

J: I never thought of it as a philosophy. I think rigor is one of the things I would center on. Not give up. Going into details. Understanding, really understanding, what you are doing … what you are teaching and what you are learning. Hmm …

B: Has that changed, your teaching style, your style of writing, in preparing these materials over the years?

J: I am not sure it has changed anything. I can’t point at change or at this stage something is changed. I think this is what my philosophy was since.

B: What’s the most favorite course you’ve developed of all the courses that you’ve taught?

J: I think that automata and formal languages. And maybe numerical analysis was also one of them. Mmm … yep.

B: Can you think of a particular student … you must explain a little bit to me and for the other listeners, about the way it works in the Open University, but do you have contact with the individual students?

J: Yes, I have contacts. But first, the Open University, as I said, is a distance education institution. The main element of the study method is written textbooks. We used to develop textbooks in Hebrew, but the procedure for developing a textbook is very intensive, very long. It takes, like, 4, 5, or 6 years to develop a textbook. It starts with a proposal, which is sent to two or three referees outside the university. And then every unit that is written is sent again to referees and going back to the proposal writer. And then the publishing house comes into it. And the editors. It takes a long time. In computer science, we couldn’t afford
ourselves to have this long time of development, because after five years, of course, the
material is obsolete. So we base our courses on English textbooks, existing English
textbooks. Some of them we translated, but it also took some time, because you have to be
very pedantic in translating. So the more advanced courses we don’t translate anymore. But
we write study guides, which are in Hebrew. Well, it is easier for us in Hebrew than in
English, and for the students, of course.

And we have … students get home these course materials. They get assignments that they
have to submit during the semester, prescheduled assignments. And we have tutorials. They
can take it … they are not mandatory. They can take it in two modes: either a regular mode,
which is once in two or three weeks, or intensive mode, which is once a week. And we force
them … the only time we force the students to come to a place is at the end of the semester,
they have to take the exam. We have about 50 centers all over the country. The tutorials are
being conducted in the centers and so are the exams. And …

What is it you asked specifically?

B: I was asking if you had contact with the individual students that were studying the
materials that you developed.

J: We consult the students, even before they are students, when they are potential students. This
is one way of contact with the student. The faculty, I mean the faculty. I know we have
course coordinators and tutors. The tutors are those that meet the students on a regular basis.
The course coordinators meet them from time to time; also to some extent on a regular base
when they visit the study centers. The faculty is more … actually in the head department of
the university, and only once in a semester, or maybe twice in a semester, visit the study
centers. That means we consult students. Now we have also a graduate program in computer
science at the university and we instruct them in their thesis or final report projects they have
to submit.

B: Do you have a particular story, a teaching story, that would — about any of the classes
or the development — that you’d like to share?

J: The only thing that pops into my mind is that I keep meeting students, former students, either
from the Open University or the Tel Aviv University, and they remember me. And I am so
happy! And they … they are grateful, so that is something I like.

B: There’s a radical change in what you’ve been doing. I’ve noticed recently you’ve moved
into intensive work with the high schools.

J: Right.

B: Would you like to talk a little about that? Because your first move was into the
graduate program after undergraduate. And now the other way, the reaching down.

J: Actually, it is not recently. It is now about 20 years, I think. Yeah! About 20 – almost, maybe
19 or 18 years.

Well, way ago, it was 1988, 1987 or 1988, I can’t really remember, I was … Ah! there was there then in Israel a committee, a professional committee of computer science. They were … they should design a computer science program for high school. There was a computer science for high school then implemented in Israel, but there was no material written and then the teachers — there were not real computer science teachers. And they were doing, you know, what they liked in the school. It wasn’t very well established. Another committee was nominated (I was not a member of it then). I was asked by one of the members of the committee if I was ready to prepare the first unit of the first two units of such a program, which was meant to be the foundations of computer science. Why he approached me — he worked in an institution adjacent to the Open University; he knew me; he knew that I was involved in designing the syllabus of courses at the Open University. So I believe that is why he chose me. I had no idea of high school curriculum, not at all.

By that time, David Harel, another colleague of mine, had a small book, *the Foundation of Computer Science*. Actually it was a radio program that he gave once a week or so, and this came out in a little book. This was the foundation of computer science. And it was after or while I was taking the courses in computer science at Tel Aviv University. But actually this book gave me the real notion of what computer science is. And I thought that I can use this book to design these two units of the high school curriculum. I then called David Harel. I never met him — oh, maybe I had met him once before — and I asked him if it was all right if I used his book (well, not to copy the book, but as a tool). And he agreed of course. He was very satisfied with it. And I prepared this program and then somehow he also got involved in this. We submitted it together to this committee and it was approved.

A year or two later, and I really don’t know why, the Minister of Education nominated a new committee, a quite new committee, which I became a member of. This new committee — Amiram Yehudai was chair, David Harel was a member, and I was a member, and another member from the Hebrew University, Catriel Beeri, and three members of the Ministry of Education, and two computer science teachers — and we designed this, what we call new curriculum of computer science, which is implemented until today. This paved the way to research in computer science. And there is where I got into research in computer science — it’s computer science education.

[35:05]

B: This is having knowledge of the talk that you gave yesterday when you won the Outstanding Computing Educator Award. You spoke about how you had mentored, essentially, into computer science education, two of the outstanding researchers in Israel. Would you like to talk about that? Because I think that’s a nice story.

J: Yes. It is Moti Ben-Ari and David Ginat. The first one was David Ginat. They both … well, I don’t think it is a secret, they both applied to the Open University. And we didn’t recruit any faculty at the time. But we were working … in all the institutions in Israel, in most of the institutions, there were teams working on the high school curriculum program, they were actually writing the materials. And there were not enough computer science educators at the
time. Actually, there was no one. There was one mathematician, one theoretical mathematician in the Technion, who was involved somehow in preparing some of the material in LOGO then. But actually there were no computer science educators at all. So when David Ginat came to the Open University, I suggested that he join the science teaching department at the Weizmann Institute, and that he starts … that he establishes the team that can take part in preparing the material for the high school curriculum. After a while — a while, meaning 2, 3, or 4 years, I really don’t remember — he left for the Tel Aviv University. And I was on sabbatical at the Weizmann Institute for that year, right when he left or the last year he was there. And then they asked me for the recommendation if I know of anyone who would come to the Weizmann Institute and chair the group of the computer science research, computer science education research there. And at that time Moti Ari came to the Open University, Moti Ben-Ari. And so I convinced him to go to the Weizmann Institute. And now he chairs the group there. I think they are both happy with this and they really like their work. David Ginat really went into it. And what I like is that both had formal good education in computer science; they both had Ph.D.s in computer science. And this was very, very important.

B: This is sort of stepping back. Could you talk about a typical day in your professional life?

J: Hmmm.

B: Because it sounds like it wouldn’t be typical in America, because you have a different — working at the Open University, slightly different, but it would be interesting, I think, for our listeners what a typical working day is like for you.

J: I try to. I try to. I … shall I start when I get up? I get up at 6 o’clock in the morning. Or its 5:45? I start very early at the university, 7:00, 7:15, 7:30. Well, I start by reading mail, but then I will go through material. I will talk with students. I will talk with my colleagues. I have lots of meetings. I’m involved in many things at the Open University, not necessarily to do with computer science. The reason is that it’s been now two years since I served in the Office of Vice-president for Academic Affairs for 6 years. Wow! And so I’m involved in zillions of committees at the Open University. And so they … you know, meeting after meeting. And talking with my colleagues. Doing … trying to do research with my colleagues, some of them working at the Open University. Ela Zur, {unclear}. And Michael Armoni, who used to be at the Open University, is on sabbatical … mm, post-doctorate at the Weizmann Institute. We try to find time during the week to work together. From time to time I have the meeting of the professional committee of computer science, Ministry of Education committee.

[40:02]

I can hardly find time during the day to read materials, to read the articles, that I would be doing later at home. I leave the university about 5:00, 6:00, sometimes 7:00 in the evening. You said professional life. But then I usually try to help my daughters with their children. And finally 10:00-11:00, I fall in bed! [both laugh]
affected your career?

J: I’m sorry?

B: Professional organizations, like ACM or ...?

J: ACM. SIGCSE. I used to be IEEE. [long pause] No professional organizations in Israel, I used to be … no, there is hardly one. So no. Yep!

And the CSTA now. CSTA!!!

B: Well yeah! Can you tell us a little bit about the CSTA? Tell us what that is and how you got involved.

J: Mmm hmm. Well, the CSTA is the Computer Science Teachers Association. I’ve heard about it ever since it was established. But Chris Stephenson [the executive director of CSTA] invited me to be the international board member on the board of directors, international director — this is the right — board of directors, a year or year and a half ago. I agreed. It is very challenging. I don’t think that I have done enough to recruit members from … really international members. I have contacts with international colleagues. I tried to organize an international panel for the next ITiCSE, but it was very difficult. And one of the difficulties was with the European colleagues: to the travel — travel expenses, and this is for the ITiCSE [the European conference]. To get to the SIGCSE [in the United States] was the visa problems, which I wasn’t aware until today, but they were aware of. And so it didn’t work out.

We have board meetings twice a year, very well organized. I attend them. I think they are doing great work. They are trying to, well, to put together the curriculum, to conduct the many workshops for teachers, computer science teachers, to collect data that seems to be unavailable. In what states there are requirements for computer science teachers? In what states there are universities that offer computer science education certificate programs? Would it be in an education school or in the computer science school? So we have only eight universities in Israel, much more colleges, but it is all very clear. And it seems to be much more complicated in the US. Even collecting this data seems to be complicated for me as an outsider. So I think the CSTA is doing great work by collecting … trying to collect this data. By serving computer science teachers and trying to find out what they need, what they lack, what they teach actually, because there is no general program that they have to teach except the AP [Advanced Placement], as I understand. So it is very interesting, very demanding. I think that I should do much more for them.

B: Thank you. Another area that I am always interested in is mentoring. And I think that in one way you’ve answered the question, that you acted as a mentor to David Ginat and to Moti Ben-Ari. But can you think of other instances where you have been a role model / mentor for others?

J: Oh! You make me blushing. Yes, I have done it all my life, I think. I’ve been mentoring in
the Open University. Actually everyone who joined the computer science education
department, in whatever they were doing, until, well, until I became vice president for
academic affairs, then for six years I left the department. I used to be head of the department,
so this is why I was mentoring them. And I am still doing it. Well, it’s mentoring in how to
write the courses, how to teach, how to talk to the students, how to consult the students. I’m
doing it today with three people, I would say, at the Open University, three members of the
computer science department. Basically on how to write the study guides for courses.

[45:35]

B: One of the things that has not come up: I have heard some men’s names, but is there a
balance between men and women in the field in Israel? Your colleagues, do you have
women colleagues?

J: I have women colleagues, but there is no balance. Well, in the community of faculty at the
universities there is a balance, now that I think of it. We have Moti Ben- Ari now in the
Weizmann Institute as a computer science educator and researcher. We have David Ginat at
the Tel Aviv University. We have Orit Hazzan at the Technion. And myself at the Open
University, this I think …

B: You do?!

J: … now coming to think of it. [both laugh] The departments of computer science, no, I don’t
think there is any balance in the computer science departments.

At the Open University we are a very small faculty. The Open University has only 60 faculty
in all areas. It was something like a motto of the Open University to be a very small kernel
and to rely also on faculty of other universities. So at the computer science department we
are seven faculty now — we are recruiting two more, but we are seven. And from seven, we
are three female and 4 males.

B: Very nice! Have there been any particular challenges that you have faced, challenges
juggling your commitments? You said you had three children, your commitments at
home, your having to travel to various … the centers. Any particular challenge you
want to talk about?

J: There was always a challenge to find the time to do everything. But my biggest, greatest
challenge is … was and still is to convince that computer science is a science. To convince
the Ministry of Education, to convince … hmm mm mm, what is the word? [long pause] I
don’t have the word; I’ll come back to it later. To convince that computer science is a science
like chemistry, physics, or biology. And it should be taught on the same par with them. That
computer science teachers should have a formal education, same as physics teacher or, for
that matter, history teachers. This has been my — policymakers! this is the word that I
looked for! — this is still a challenge. This is still a challenge. Always was and still is.

B: Thank you. Do you have any outside interests that would help us understand you
better? You used to play the accordion.
J: Yeah, I don’t play anymore. My grandchildren ask me to play and I promise them and I don’t do it. I love to read. I love music. I have only a little time for this. When I am traveling I do some reading.

B: It looked like one of the outside interests was certainly your grandchildren, because we saw pictures of them in your talk.

J: Yes, I try to devote time to them. Compensating of the time I didn’t devote to my children, maybe didn’t devote enough time. So I try very hard.

B: Are there any of those interests that shaped your career? Like partly the accordion made possible your career.

J: Right! Did it shape my career? I’m not sure. No, I see myself, you know, always running ahead and trying to do as much as I can. Not so much for myself — of course, my career is me — but to do for students, to do good for Israel, for the society. I think this is it.

B: If you could change one decision you made along the way, along your career path, what might that be?

J: Hmm. [long pause] Terrible! I don’t think there is anything I want to change.

B: That’s wonderful, that doesn’t sound terrible! Well, how about this one: if there were one story you could tell that you want to remembered by, you want everyone to remember this one story, what would that one story be?

J: Story? Or something I’ve done?

B: Well, it could be something you did, some occurrence that happened, and everybody would say, “Oh, that is Judith!”

J: I think it is the high school curriculum in computer science. I think this is maybe the most important thing — except my children and family, of course — I’ve done.

B: Well, thank you! We’re very glad that you spent with us this afternoon. We really thank you for all you are doing for computer science.

J: Thank you.